Dopamine-Grafted Hyaluronic Acid Coated Hyperbranched Poly(β-Amino Esters)/DNA Nano-Complexes for Enhanced Gene Delivery and Biosafety
نویسندگان
چکیده
Gene therapy has attracted particular attention for the treatment of various genetic diseases, and development gene delivery vectors is utmost importance in vivo applications drugs. Various cationic polymers with high nucleic acid loading intracellular transfection efficiency have been reported, however, their biological are limited by potential toxicity. Surface modification a robust solution to detoxify vectors, but this can inevitably weaken efficiency. To address dilemma, we reported ability dopamine (DA)-grafted hyaluronic (HA) modify enhanced biosafety. The nano-vector was formed using branched poly(β-amino esters) (PAEs), surface coating HA-DA form core-shell nano-structure via electrostatic attraction. Upon modification, biosafety vehicle improved, as demonstrated cell cytotoxicity assay hemolysis test. Notably, nano-system displayed DA-dependent efficiency, which higher DA grafting degree resulted better efficacy. This be explained adhesive nature DA, facilitating membrane interaction, well receptor mediated active targeting. At optimal ratio, achieved even than that commonly used polyethylenimine (PEI) vectors. Together its excellent biocompatibility, vector presented here holds great promise applications.
منابع مشابه
Poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone coated Magnetic nanoparticles as a pH-responsive magnetic Nano-carrier for controlled delivery of antibiotics
Objective(s): Pharmaceutical industries are leading to improved medications that can target diseases more effectively and precisely. Researchers have intended to reformulate drugs so that they may be more safely used in human body. The more targeted a drug is, the lower its chance of triggering drug resistance, a cautionary concern surrounding the use of broad-spectrum antibiotics. The aim of t...
متن کاملCD44 Mediated Nonviral Gene Delivery into Human Embryonic Stem Cells via Hyaluronic-Acid-Coated Nanoparticles
Gene delivery is an important tool to study and manipulate human pluripotent stem cells for regenerative medicine purposes. Yet current methods of transient gene delivery to stem cells are still inefficient. Through the combination of biologically based concepts and material design, we aim to develop new methods to enhance the efficiency of gene delivery to stem cells. Specifically, we use poly...
متن کاملMagnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin
Objective(s): Researchers have intended to reformulate drugs so that they may be more safely used in human body. Polymer science and nanotechnology have great roles in this field. The aim of this paper is to introduce an efficient drug delivery vehicle which can perform both targeted and controlled antibiotic release using magnetic nanoparticles grafted pH-responsive polymer.<s...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Crystals
سال: 2021
ISSN: ['2073-4352']
DOI: https://doi.org/10.3390/cryst11040347